Investigation of Operating Parameters on Ultrasound-Assisted Extraction of Anethole in Fennel Essential Oil
In this paper, the operational impact of three parameters including power of ultrasonic apparatus, size of fennel seeds and experiment time on the extraction yield of Anethole, which is the main considerable component in fennel essential oil and its concentration have been studied through Ultrasound...
Gespeichert in:
Veröffentlicht in: | Journal of chemical and petroleum engineering (Online) 2021-12, Vol.55 (2), p.339-351 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the operational impact of three parameters including power of ultrasonic apparatus, size of fennel seeds and experiment time on the extraction yield of Anethole, which is the main considerable component in fennel essential oil and its concentration have been studied through Ultrasound-Assisted Extraction. The ultrasonic extraction of oil from fennel seeds using a solution of 70% water-ethanol was studied at different particle sizes, different ultrasonic powers and three different levels of time. The most effective parameter was particle size, while the experiment time had the least impact on both the efficiency and Anethole concentration as well. As a result, compared to Soxhlet method, the ultrasonic-assisted extraction was more efficient. In this experiment, eighteen constituents were identified for fennel seeds using GC–MS. The major components were Anethole (78.12%), Fenchone (8.81%), Limonene (4.39%), and Estragole (4.52%). Furthermore, the analysis of two quadratic models using the Box-Behnken design (BBD) indicated that the quadratic polynomial model can be applied for estimating the Anethole extraction yield as well as Anethole concentration. |
---|---|
ISSN: | 2423-673X 2423-6721 |
DOI: | 10.22059/JCHPE.2021.325123.1352 |