Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation

Designing efficient catalysts and understanding the underlying mechanisms for anodic nucleophile electrooxidation are central to the advancement of electrochemically-driven technologies. Here, a heterostructure of nickel boride/nickel catalyst is developed to enable methanol electrooxidation into fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-08, Vol.13 (1), p.4602-4602, Article 4602
Hauptverfasser: Qi, Yanbin, Zhang, Yue, Yang, Li, Zhao, Yuhan, Zhu, Yihua, Jiang, Hongliang, Li, Chunzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Designing efficient catalysts and understanding the underlying mechanisms for anodic nucleophile electrooxidation are central to the advancement of electrochemically-driven technologies. Here, a heterostructure of nickel boride/nickel catalyst is developed to enable methanol electrooxidation into formate with a Faradaic efficiency of nearly 100%. Operando electrochemical impedance spectroscopy and in situ Raman spectroscopy are applied to understand the influence of methanol concentration in the methanol oxidation reaction. High concentrations of methanol inhibit the phase transition of the electrocatalyst to high-valent electro-oxidation products, and electrophilic oxygen species (O* or OH*) formed on the electrocatalyst are considered to be the catalytically active species. Additional mechanistic investigation with density functional theory calculations reveals that the potential-determining step, the formation of *CH 2 O, occurs most favorably on the nickel boride/nickel heterostructure rather than on nickel boride and nickel. These results are highly instructive for the study of other nucleophile-based approaches to electrooxidation reactions and organic electrosynthesis. Understanding the role of active sites in electrooxidation reactions is important yet challenging. Here, the authors use operando spectroscopies to monitor the effect of methanol concentration on Ni 3 B/Ni heterostructures during formate production.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32443-5