Protein interaction disruption in cancer
Most methods that integrate network and mutation data to study cancer focus on the effects of genes/proteins, quantifying the effect of mutations or differential expression of a gene and its neighbors, or identifying groups of genes that are significantly up- or down-regulated. However, several muta...
Gespeichert in:
Veröffentlicht in: | BMC cancer 2019-04, Vol.19 (1), p.370-370, Article 370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most methods that integrate network and mutation data to study cancer focus on the effects of genes/proteins, quantifying the effect of mutations or differential expression of a gene and its neighbors, or identifying groups of genes that are significantly up- or down-regulated. However, several mutations are known to disrupt specific protein-protein interactions, and network dynamics are often ignored by such methods. Here we introduce a method that allows for predicting the disruption of specific interactions in cancer patients using somatic mutation data and protein interaction networks.
We extend standard network smoothing techniques to assign scores to the edges in a protein interaction network in addition to nodes. We use somatic mutations as input to our modified network smoothing method, producing scores that quantify the proximity of each edge to somatic mutations in individual samples.
Using breast cancer mutation data, we show that predicted edges are significantly associated with patient survival and known ligand binding site mutations. In-silico analysis of protein binding further supports the ability of the method to infer novel disrupted interactions and provides a mechanistic explanation for the impact of mutations on key pathways.
Our results show the utility of our method both in identifying disruptions of protein interactions from known ligand binding site mutations, and in selecting novel clinically significant interactions. Supporting website with software and data: https://www.cs.cmu.edu/~mruffalo/mut-edge-disrupt/ . |
---|---|
ISSN: | 1471-2407 1471-2407 |
DOI: | 10.1186/s12885-019-5532-5 |