Machine Learning for Data Center Optimizations: Feature Selection Using Shapley Additive exPlanation (SHAP)
The need for artificial intelligence (AI) and machine learning (ML) models to optimize data center (DC) operations increases as the volume of operations management data upsurges tremendously. These strategies can assist operators in better understanding their DC operations and help them make informe...
Gespeichert in:
Veröffentlicht in: | Future internet 2023-03, Vol.15 (3), p.88 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The need for artificial intelligence (AI) and machine learning (ML) models to optimize data center (DC) operations increases as the volume of operations management data upsurges tremendously. These strategies can assist operators in better understanding their DC operations and help them make informed decisions upfront to maintain service reliability and availability. The strategies include developing models that optimize energy efficiency, identifying inefficient resource utilization and scheduling policies, and predicting outages. In addition to model hyperparameter tuning, feature subset selection (FSS) is critical for identifying relevant features for effectively modeling DC operations to provide insight into the data, optimize model performance, and reduce computational expenses. Hence, this paper introduces the Shapley Additive exPlanation (SHAP) values method, a class of additive feature attribution values for identifying relevant features that is rarely discussed in the literature. We compared its effectiveness with several commonly used, importance-based feature selection methods. The methods were tested on real DC operations data streams obtained from the ENEA CRESCO6 cluster with 20,832 cores. To demonstrate the effectiveness of SHAP compared to other methods, we selected the top ten most important features from each method, retrained the predictive models, and evaluated their performance using the MAE, RMSE, and MPAE evaluation criteria. The results presented in this paper demonstrate that the predictive models trained using features selected with the SHAP-assisted method performed well, with a lower error and a reasonable execution time compared to other methods. |
---|---|
ISSN: | 1999-5903 1999-5903 |
DOI: | 10.3390/fi15030088 |