Optimization of Biodiesel Production Parameters from Cucurbita maxima Waste Oil Using Microwave Assisted via Box-Behnken Design Approach

The production of biodiesel from vegetables or fruits waste oils has high potential as renewable energy. The Cucurbita maxima wastes are massive source of oils, which are believed to indicate the possible sources of renewable energy whose biodiesel can be produced. Hence, the study explores the pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemistry 2022-04, Vol.2022, p.1-12
1. Verfasser: Hundie, Ketema Beyecha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The production of biodiesel from vegetables or fruits waste oils has high potential as renewable energy. The Cucurbita maxima wastes are massive source of oils, which are believed to indicate the possible sources of renewable energy whose biodiesel can be produced. Hence, the study explores the potential of the Cucurbita maxima wastes, for the production of biodiesel. In this study, the Soxhlet extraction method was used to extract Cucurbita maxima waste oil using an organic solvent. Through Box-Behnken design (BBD), the effects of methanol to oil molar ratio (6–10), catalyst concentration (2–6%), and reaction time (45–75 min) on the transesterification efficiency of methyl esters were investigated. The oil contents of Cucurbita maxima waste was found to be 44.6±0.21%. This oil was characterized, and after obtaining the pure characterized oil, biodiesel was produced using microwave assisted by the transesterification process. The optimum conversion efficiency of the Cucurbita maxima waste oil to fatty acid methyl ether was 97.76%, at the optimal parameters, methanol to oil ratio (8.4 : 1), catalyst concentration (3.14%), and reaction time (57.12 min). The results revealed that all parameters have a significant effect on the yield of biodiesel (p
ISSN:2090-9063
2090-9071
DOI:10.1155/2022/8516163