Transcriptomic profiling of microglia and astrocytes throughout aging

Activation of microglia and astrocytes, a prominent hallmark of both aging and Alzheimer's disease (AD), has been suggested to contribute to aging and AD progression, but the underlying cellular and molecular mechanisms are largely unknown. We performed RNA-seq analyses on microglia and astrocy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroinflammation 2020-04, Vol.17 (1), p.97-97, Article 97
Hauptverfasser: Pan, Jie, Ma, Nana, Yu, Bo, Zhang, Wei, Wan, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activation of microglia and astrocytes, a prominent hallmark of both aging and Alzheimer's disease (AD), has been suggested to contribute to aging and AD progression, but the underlying cellular and molecular mechanisms are largely unknown. We performed RNA-seq analyses on microglia and astrocytes freshly isolated from wild-type and APP-PS1 (AD) mouse brains at five time points to elucidate their age-related gene-expression profiles. Our results showed that from 4 months onward, a set of age-related genes in microglia and astrocytes exhibited consistent upregulation or downregulation (termed "age-up"/"age-down" genes) relative to their expression at the young-adult stage (2 months). And most age-up genes were more highly expressed in AD mice at the same time points. Bioinformatic analyses revealed that the age-up genes in microglia were associated with the inflammatory response, whereas these genes in astrocytes included widely recognized AD risk genes, genes associated with synaptic transmission or elimination, and peptidase-inhibitor genes. Overall, our RNA-seq data provide a valuable resource for future investigations into the roles of microglia and astrocytes in aging- and amyloid-β-induced AD pathologies.
ISSN:1742-2094
1742-2094
DOI:10.1186/s12974-020-01774-9