Risk prediction of gestational diabetes mellitus in women with polycystic ovary syndrome based on a nomogram model
Women with polycystic ovary syndrome are prone to develop gestational diabetes mellitus, a disease which may have significant impact on the postpartum health of both mother and infant. We performed a retrospective cohort study to develop and test a model that could predict gestational diabetes melli...
Gespeichert in:
Veröffentlicht in: | BMC Pregnancy and Childbirth 2023-06, Vol.23 (1), p.408-408, Article 408 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Women with polycystic ovary syndrome are prone to develop gestational diabetes mellitus, a disease which may have significant impact on the postpartum health of both mother and infant. We performed a retrospective cohort study to develop and test a model that could predict gestational diabetes mellitus in the first trimester in women with polycystic ovary syndrome. Our study included 434 pregnant women who were referred to the obstetrics department between December 2017 and March 2020 with a diagnosis of polycystic ovary syndrome. Of these women, 104 were diagnosed with gestational diabetes mellitus in the second trimester. Univariate analysis revealed that in the first trimester, Hemoglobin A1c (HbA1C), age, total cholesterol(TC), low-density lipoprotein cholesterol (LDL-C), SBP (systolic blood pressure), family history, body mass index (BMI), and testosterone were predictive factors of gestational diabetes mellitus (P |
---|---|
ISSN: | 1471-2393 1471-2393 |
DOI: | 10.1186/s12884-023-05670-x |