Investigating the Full Process of Flexibility Provision from Decentralised Energy Systems: From Quantification of Flexibility Potential to the Evaluation of Flexibility Provision Impacts

Although they are primarily installed for specific applications, decentralised energy systems, storage systems, and controllable loads can provide flexibility. However, this varies over time. This study investigates the fundamentals of flexibility provision, including quantification, aggregation, si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-12, Vol.17 (24), p.6355
Hauptverfasser: Maitanova, Nailya, Schlüters, Sunke, Hanke, Benedikt, von Maydell, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although they are primarily installed for specific applications, decentralised energy systems, storage systems, and controllable loads can provide flexibility. However, this varies over time. This study investigates the fundamentals of flexibility provision, including quantification, aggregation, simulation, and impact on energy systems and the power grid. We extended our methods by integrating adjustments to calculate the flexibility potential of heat pumps (HPs) and heat storage (HS) systems, as well as by incorporating variability and uncertainty. The simulations revealed the relevance of energy systems operation to flexibility, e.g., 2 K deviation in HS temperature increased theoretical coverage by 16 percentage points. The results also proved that aggregating multiple systems could obviously enhance their flexibility potential, e.g., six investigated battery storage (BS) systems could have covered up to 20 percentage points more external flexibility requests than any individual unit. The provision of flexibility by decentralised energy systems can lead to energy surpluses or deficits. Such imbalances could have been fully balanced in a system- and grid-oriented manner in 44% of BS simulations and in 32% of HP-HS ones. Overall, the findings highlight the importance of the system- and grid-oriented operation of decentralised energy systems, alongside local optimisation, for a future energy infrastructure.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17246355