Growth Equation of the General Fractional Calculus

We consider the Cauchy problem ( D ( k ) u ) ( t ) = λ u ( t ) , u ( 0 ) = 1 , where D ( k ) is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory 71 (2011), 583–600), λ > 0 . The solution is a generalization of the function t ↦ E α ( λ t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2019-07, Vol.7 (7), p.615
Hauptverfasser: Kochubei, Anatoly, Kondratiev, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Cauchy problem ( D ( k ) u ) ( t ) = λ u ( t ) , u ( 0 ) = 1 , where D ( k ) is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory 71 (2011), 583–600), λ > 0 . The solution is a generalization of the function t ↦ E α ( λ t α ) , where 0 < α < 1 , E α is the Mittag–Leffler function. The asymptotics of this solution, as t → ∞ , are studied.
ISSN:2227-7390
2227-7390
DOI:10.3390/math7070615