Growth Equation of the General Fractional Calculus
We consider the Cauchy problem ( D ( k ) u ) ( t ) = λ u ( t ) , u ( 0 ) = 1 , where D ( k ) is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory 71 (2011), 583–600), λ > 0 . The solution is a generalization of the function t ↦ E α ( λ t...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2019-07, Vol.7 (7), p.615 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Cauchy problem ( D ( k ) u ) ( t ) = λ u ( t ) , u ( 0 ) = 1 , where D ( k ) is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory 71 (2011), 583–600), λ > 0 . The solution is a generalization of the function t ↦ E α ( λ t α ) , where 0 < α < 1 , E α is the Mittag–Leffler function. The asymptotics of this solution, as t → ∞ , are studied. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math7070615 |