Investigating the OXA Variants of ESKAPE Pathogens

ESKAPE pathogens are the leading cause of nosocomial infections. The Global Priority List of WHO has categorized ESKAPE as priority 1 and 2 pathogens. Even though several mechanisms contribute to antimicrobial resistance, OXA β-lactamase has emerged as a new threat in combating nosocomial infections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antibiotics (Basel) 2021-12, Vol.10 (12), p.1539
Hauptverfasser: Pandey, Deeksha, Singhal, Neelja, Kumar, Manish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ESKAPE pathogens are the leading cause of nosocomial infections. The Global Priority List of WHO has categorized ESKAPE as priority 1 and 2 pathogens. Even though several mechanisms contribute to antimicrobial resistance, OXA β-lactamase has emerged as a new threat in combating nosocomial infections. In the present study we have investigated the presence of OXA and their variants, copy number, distribution on chromosomes/plasmids, subfamilies, phylogenetic relationships, amino acid identities and variabilities in ESKAPE pathogens. Our results revealed that a total of 929 OXA were present in 2258 completely assembled genomes, which could be further subdivided into 16 sub-families. Among all the ESKAPE pathogens, OXA were highly prevalent in , followed by and but completely absent in and while, only a few copies were found in spp. Most of the OXA variants belonged to the OXA-51-like subfamily (200 proteins), followed by OXA-50-like subfamily (189 proteins), OXA-23-like subfamily (156 proteins) and OXA-1-like subfamily (154 proteins). OXA-51-like, OXA-213-like, OXA-134-like, OXA-58-like, OXA-24-like and OXA-20-like subfamilies were present exclusively in Phylogenetic tree of the subfamilies revealed that OXA-1-like and OXA-33-like, OXA-51-like and OXA-213-like and, OXA-5-like and OXA-10-like belonged to the same branches with amino acid identities as 100%, 97.10% and 80.90% respectively. This indicates that the members of these subfamily-pairs might have evolved from the same ancestor or have recently diverged. Thus, a judicious use of carbapenems is warranted to curtail the rise of new OXA enzymes and preserve them. This is the first detailed report about the OXA of ESKAPE pathogens.
ISSN:2079-6382
2079-6382
DOI:10.3390/antibiotics10121539