Acquired tumor resistance to antiangiogenic therapy: Mechanisms at a glance

Angiogenesis is critical for oxygen and nutrient delivery to proliferating tumor cells. Therefore, as angiogenesis is required and vital for the tumor growth and metastasis. Antiangiogenic therapy is considered to be beneficial for tumor growth prevention due to starvation of tumor of oxygen and nut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of research in medical sciences 2017-01, Vol.22 (1), p.117-117
Hauptverfasser: Zarrin, Bahare, Zarifi, Farzane, Vaseghi, Golnaz, Javanmard, Shaghayegh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiogenesis is critical for oxygen and nutrient delivery to proliferating tumor cells. Therefore, as angiogenesis is required and vital for the tumor growth and metastasis. Antiangiogenic therapy is considered to be beneficial for tumor growth prevention due to starvation of tumor of oxygen and nutrients, but in some cases, the benefits are not permanent. Tyrosine kinase inhibitors and many other agents often target angiogenesis through inhibition of the vascular endothelial growth factor (VEGF) pathway. Although preclinical studies showed satisfactory outcomes in tumor growth inhibition, antiangiogenic therapy in the clinical setting may not be effective.The resistance observed in several tumor types through alternative angiogenic "escape" pathways contributes to restoration of tumor growth and may induce progression, enhancement of invasion, and metastasis. Therefore, activation of major compensatory angiogenic pathways, sustaining tumor angiogenesis during VEGF blockade contributing to the recurrence of tumor growth overcome antiangiogenic strategies. In this review, we summarize the novel mechanisms involved in evasive resistance to antiangiogenic therapies and represent different cancer types which have the ability to adapt to VEGF inhibition achieving resistance to antiangiogenic therapy through these adaptive mechanisms.
ISSN:1735-1995
1735-1995
1735-7136
DOI:10.4103/jrms.jrms_182_17