Simulation and Application of a New Multiphase Flow Ablation Test System for Thermal Protection Materials Based on Liquid Rocket Engine
Internal flow field ablation is an important issue in thermal protection materials for rocket engines and hypersonic vehicles. In this paper, a new multiphase flow ablation test system, with an Al2O3 particle delivery device based on an oxygen-kerosene liquid rocket engine, is designed and manufactu...
Gespeichert in:
Veröffentlicht in: | Aerospace 2022-11, Vol.9 (11), p.701 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Internal flow field ablation is an important issue in thermal protection materials for rocket engines and hypersonic vehicles. In this paper, a new multiphase flow ablation test system, with an Al2O3 particle delivery device based on an oxygen-kerosene liquid rocket engine, is designed and manufactured. A general variable-precision modular system simulation method is proposed to analyze the dynamic characteristics of the system. In addition, a unique internal flow field ablation test was performed on the 4D C/C composite simulating the working conditions of the SRM. The results show that the system can provide a wide temperature range (756~3565 K) and pressure range (0.2~4.2 MPa). The multi-disciplinary dynamic variable-precision system simulation method is helpful for more accurate design and test analysis, and the maximum error is less than 5%. The ablation tests show that the line ablation rate of the C/C composite nozzle at 3380 K and 1 MPa is 0.053 mm/s, verifying the combined effect of thermochemical and mechanical ablation. The ablation environment is controllable, which provides an effective way for the ablation test of thermal protection materials. In addition, the variable-precision dynamic simulation method has important reference value for the system design related to liquid rocket engine. |
---|---|
ISSN: | 2226-4310 2226-4310 |
DOI: | 10.3390/aerospace9110701 |