Blind Restoration of Motion Blurred Barcode Images using Ridgelet Transform and Radial Basis Function Neural Network
The aim of any image restoration techniques is recovering the original image from a degraded observation. One of the most common degradation phenomena in images is motion blur. In case of blind image restoration accurate estimation of motion blur parameters is required for deblurring of such images....
Gespeichert in:
Veröffentlicht in: | Electronic letters on computer vision and image analysis 2014-12, Vol.13 (3), p.63-80 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of any image restoration techniques is recovering the original image from a degraded observation. One of the most common degradation phenomena in images is motion blur. In case of blind image restoration accurate estimation of motion blur parameters is required for deblurring of such images. This paper proposed a novel technique for estimating the parameters of motion blur using ridgelet transform. Initially, the energy of ridgelet coefficients is used to estimate the blur angle and then blur length is estimated using a radial biases function neural network. This work is tested on different barcode images with varying parameters of blur. The simulation results show that the proposed method improves the restoration performance. |
---|---|
ISSN: | 1577-5097 1577-5097 |
DOI: | 10.5565/rev/elcvia.577 |