235 Novel biparatopic TIM-3 antibody effectively blocks multiple inherent ligands and activates anti-tumor immunity
BackgroundT cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is a part of modules expressed on dysfunctional or exhausted T cells as well as dendritic cells and has emerged as a target for several therapeutic antibodies that are under clinical development. Co-blockade of TIM-3 and P...
Gespeichert in:
Veröffentlicht in: | Journal for immunotherapy of cancer 2021-11, Vol.9 (Suppl 2), p.A251-A251 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundT cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is a part of modules expressed on dysfunctional or exhausted T cells as well as dendritic cells and has emerged as a target for several therapeutic antibodies that are under clinical development. Co-blockade of TIM-3 and PD-1 results in tumor regression in preclinical models and improves anticancer T cell responses in patients with advanced cancers. TIM-3 has been reported to have multiple ligands including galectin-9, phosphatidylserine, CEACAM-1 and HMGB1, which bind to different regions on the extracellular domain of TIM-3. Most of the TIM-3 antibodies developed to date are intended to inhibit phosphatidylserine that binds to the pocket in TIM-3 immunoglobulin V domain. Galectin-9 binds to carbohydrate motifs on the opposite side of phosphatidylserine-binding site in immunoglobulin V domain and thereby induces cell death in TIM-3+ T cells. We report herein novel antibodies that block TIM-3 binding to multiple ligands including these two important ligands simultaneously.MethodsAnti-TIM-3 antibodies were generated by immunizing mice with a purified recombinant TIM-3 protein and TIM-3-expressing mammalian cell line. Phage display libraries were constructed using cDNAs of splenocytes and lymph node cells of the immunized mice, then subjected to the biopanning using recombinant TIM-3 proteins. After analyzing specificities and affinities to the TIM-3 protein, scFvs obtained were classified by epitope bin and inhibitory effects on TIM-3 binding to the multiple ligands. The scFvs were converted to scFv-Fc to generate biparatopic (bispecific) antibodies.ResultsAt least five classes of TIM-3 antibodies were obtained, and each class was grouped into different epitope bins and has unique inhibitory profiles for multiple ligands of TIM-3. Their biparatopic (bispecific) forms were produced from the scFv clones and subjected to the analyses of TIM-3 binding, inhibition of ligand binding, and immune activation. As expected, the biparatopic antibodies that recognize two different epitopes showed higher affinity and specificity to TIM-3 than monospecific forms. A lead biparatopic antibody that block the binding of TIM-3 to galectin-9 and phosphatidylserine showed remarkable potency on T cell activation, protection from exhaustion and apoptotic cell death of T cells as well as more potent anti-tumor efficacy.ConclusionsThis study demonstrates the successful development of a novel biparatopic an |
---|---|
ISSN: | 2051-1426 |
DOI: | 10.1136/jitc-2021-SITC2021.235 |