Comparison of Postural Stability and Regulation among Female Athletes from Different Sports
The aim of this study was to evaluate the postural regulation of female athletes who participate in different sports under normal and high-demand conditions. Fifty-nine female athletes were classified into four specific groups based on their individual sport, which included basketball (n = 16), gymn...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-04, Vol.11 (7), p.3277 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to evaluate the postural regulation of female athletes who participate in different sports under normal and high-demand conditions. Fifty-nine female athletes were classified into four specific groups based on their individual sport, which included basketball (n = 16), gymnastics (n = 10), ski jumping (n = 13), diving (n = 8), and one group of recreational athletes (n = 12). These groups were then compared using several posturographic tests under four bipedal conditions: eyes open or closed and on a stable surface or foam pad. While there were some differences between groups standing in the less demanding positions (stable surface), the higher demanding positions (unstable surface-foam pads) showed significant differences between the technical sports (ski jumping, diving, and gymnastics) and basketball and recreational athletes. Most (50%, 6/12) of significant differences were provided by sports. In contrast, the predictors age, weight, and height played only a minor role within the covariance analysis. The largest effect by sports was detected for the anterior-posterior weight distribution standing on foam pads with closed eyes (p = 0.015, ηp2 = 0.211). Ski jumping and recreational athletes showed the largest (p = 0.011) partial difference by sports for this parameter and test position. According to the parameters, the weight distribution index (WDI) was the variable with the most significant effects (50%, 6/12). These results provide coaches and athletes with a more sport specific view on postural regulation and potentially assist in identifying deficits to improve sports performance and reduce the risk of injury. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11073277 |