A Reweighted Symmetric Smoothed Function Approximating L0-Norm Regularized Sparse Reconstruction Method
Sparse-signal recovery in noisy conditions is a problem that can be solved with current compressive-sensing (CS) technology. Although current algorithms based on L 1 regularization can solve this problem, the L 1 regularization mechanism cannot promote signal sparsity under noisy conditions, resulti...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2018-11, Vol.10 (11), p.583 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sparse-signal recovery in noisy conditions is a problem that can be solved with current compressive-sensing (CS) technology. Although current algorithms based on L 1 regularization can solve this problem, the L 1 regularization mechanism cannot promote signal sparsity under noisy conditions, resulting in low recovery accuracy. Based on this, we propose a regularized reweighted composite trigonometric smoothed L 0 -norm minimization (RRCTSL0) algorithm in this paper. The main contributions of this paper are as follows: (1) a new smoothed symmetric composite trigonometric (CT) function is proposed to fit the L 0 -norm; (2) a new reweighted function is proposed; and (3) a new L 0 regularization objective function framework is constructed based on the idea of T i k h o n o v regularization. In the new objective function framework, Contributions (1) and (2) are combined as sparsity regularization terms, and errors as deviation terms. Furthermore, the conjugate-gradient (CG) method is used to optimize the objective function, so as to achieve accurate recovery of sparse signal and image under noisy conditions. The numerical experiments on both the simulated and real data verify that the proposed algorithm is superior to other state-of-the-art algorithms, and achieves advanced performance under noisy conditions. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym10110583 |