The ATPase Pontin is a key cell cycle regulator by amplifying E2F1 transcription response in glioma
Pontin (RUVBL1) is a highly conserved ATPase of the AAA + (ATPases Associated with various cellular Activities) superfamily and is implicated in various biological processes crucial for oncogenesis. Its overexpression is observed in multiple human cancers, whereas the relevance of Pontin to gliomage...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2021-02, Vol.12 (2), p.141-141, Article 141 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pontin (RUVBL1) is a highly conserved ATPase of the AAA + (ATPases Associated with various cellular Activities) superfamily and is implicated in various biological processes crucial for oncogenesis. Its overexpression is observed in multiple human cancers, whereas the relevance of Pontin to gliomagenesis remains obscure. To gain insights into Pontin involvement in glioma, we performed bioinformatics analyses of
Pontin
co-expressed genes, Pontin-affected genes, and carried out experimental studies. The results verified that Pontin was upregulated in gliomas. Its higher levels might predict the worse prognosis of glioma patients. The
Pontin
co-expressed genes were functionally enriched in cell cycle progression and RNA processing. In the nucleus, Pontin promoted cell growth via facilitating cell cycle progression. Using RNA-seq, we found that Pontin knockdown resulted in altered expression of multiple genes, among which the E2F1 targets accounted for a large proportion. Mechanistic studies found that Pontin interacted with E2F1 and markedly amplified the E2F1 transcription response in an ATPase domain-dependent manner. By analyzing the RNA-seq data, we also found that Pontin could impact on the alternative splicing (AS). Both differential expressed genes and AS events affected by Pontin were associated with cell cycle regulation. Taken together, our findings provide novel insights of the importance of Pontin in gliomagenesis by regulating cell cycle and AS, and shed light on the possible application of Pontin as an antineoplastic target in glioma. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/s41419-021-03421-4 |