Topological helical edge states in water waves over a topographical bottom

We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2018-02, Vol.20 (2), p.23051
Hauptverfasser: Wu, Shiqiao, Wu, Ying, Mei, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full-wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/aa9cdb