Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity

The type II nuclear receptors (NRs) function as heterodimeric transcription factors with the retinoid X receptor (RXR) to regulate diverse biological processes in response to endogenous ligands and therapeutic drugs. DNA-binding specificity has been proposed as a primary mechanism for NR gene regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-06, Vol.10 (1), p.2514-15, Article 2514
Hauptverfasser: Penvose, Ashley, Keenan, Jessica L., Bray, David, Ramlall, Vijendra, Siggers, Trevor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The type II nuclear receptors (NRs) function as heterodimeric transcription factors with the retinoid X receptor (RXR) to regulate diverse biological processes in response to endogenous ligands and therapeutic drugs. DNA-binding specificity has been proposed as a primary mechanism for NR gene regulatory specificity. Here we use protein-binding microarrays (PBMs) to comprehensively analyze the DNA binding of 12 NR:RXRα dimers. We find more promiscuous NR-DNA binding than has been reported, challenging the view that NR binding specificity is defined by half-site spacing. We show that NRs bind DNA using two distinct modes, explaining widespread NR binding to half-sites in vivo. Finally, we show that the current models of NR specificity better reflect binding-site activity rather than binding-site affinity. Our rich dataset and revised NR binding models provide a framework for understanding NR regulatory specificity and will facilitate more accurate analyses of genomic datasets. The type II nuclear receptors (NRs) and the retinoid X receptor (RXR) form heterodimeric transcription factors to regulate development, metabolism, and inflammation. Here the authors employ protein-binding microarrays to comprehensively analyze the DNA binding of 12 NR:RXRα heterodimers, and report promiscuous NR-DNA binding.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10264-3