Development of Architectural Object Automatic Classification Technology for Point Cloud-Based Remodeling of Aging Buildings

In this study, we address the challenge of efficiently handling the maintenance and remodeling of buildings constructed post-1960s, lacking architectural drawings. The conventional approach involves manual measurements and data recording, followed by digital drawing creation. However, we leverage Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-01, Vol.14 (2), p.862
Hauptverfasser: Kim, Taehoon, Gu, Hyeongmo, Hong, Soonmin, Choo, Seungyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we address the challenge of efficiently handling the maintenance and remodeling of buildings constructed post-1960s, lacking architectural drawings. The conventional approach involves manual measurements and data recording, followed by digital drawing creation. However, we leverage Fourth Industrial Revolution technologies to develop a deep learning-based automatic object classification system using point cloud data. We employ the FCAF3D network with multiscale cells, optimizing its configuration for classifying building components such as walls, floors, roofs, and other objects. While classifying walls, floors, and roofs using bounding boxes led to some boundary-related errors, the model performed well for objects with distinct shapes. Our approach emphasizes efficiency in the remodeling process rather than precise numerical calculations, reducing labor and improving architectural planning quality. While our dataset labeling strategy involved bounding boxes with limitations in numerical precision, future research could explore polygon-based labeling, minimizing loss of space and potentially yielding more meaningful results in classification. In summary, our technology aligns with the initial research objectives, and further investigations could enhance the methodology for even more accurate building object classification.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14020862