Identification of Subsurface Mesoscale Crack in Full Ceramic Ball Bearings Based on Strain Energy Theory

Subsurface mesoscale cracks exist widely in the outer ring of full ceramic ball bearings (FCBBs), which is a potential threat for the stable operation of related devices such as aero engines, food processing machinery, and artificial replacement hip joints. This paper establishes a dynamic model of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-07, Vol.13 (13), p.7783
Hauptverfasser: Bai, Xiaotian, Zhang, Zhaonan, Shi, Huaitao, Luo, Zhong, Li, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subsurface mesoscale cracks exist widely in the outer ring of full ceramic ball bearings (FCBBs), which is a potential threat for the stable operation of related devices such as aero engines, food processing machinery, and artificial replacement hip joints. This paper establishes a dynamic model of subsurface mesoscale cracks in the outer ring of FCBBs based on strain energy theory, and the influence of different crack lengths on the running state is analyzed. The existence of mesoscale cracks is regarded as weakening on the stiffness coefficient, and the deterioration degree of outer ring stiffness of subsurface cracks is thereby quantified. It is found that a small wave peak appears in the vibration time-domain signal when there is a mesoscale crack on the outer ring subsurface, and the crack evolution is evaluated by the amplitude of the corresponding feature frequency. Finally, the accuracy of the model is verified by experiments. The model realizes the identification and degree evaluation of subsurface mesoscale cracks in FCBBs, and provides theoretical references for the diagnosis and status monitoring for FCBB rotor systems.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13137783