Synthesis and Characterization of Microcapsules as Fillers for Self-Healing Dental Composites

This article proposes the synthesis and characterization of (triethylene glycol dimethacrylate-N,N-dihydroxyethyl-p-toluidine) TEGDMA-DHEPT self-healing microcapsules for their inclusion in dental composite formulations. The obtaining method is the in situ emulsion polymerization of the (poly urea-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-11, Vol.14 (22), p.1853
Hauptverfasser: Tăut, Maria Amalia, Moldovan, Marioara, Filip, Miuţa, Petean, Ioan, Saroşi, Codruţa, Cuc, Stanca, Taut, Adrian Catalin, Ardelean, Ioan, Lazăr, Viorica, Man, Sorin Claudiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes the synthesis and characterization of (triethylene glycol dimethacrylate-N,N-dihydroxyethyl-p-toluidine) TEGDMA-DHEPT self-healing microcapsules for their inclusion in dental composite formulations. The obtaining method is the in situ emulsion polymerization of the (poly urea-formaldehyde) (PUF) coatings. The microcapsules were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), high-performance liquid chromatography (HPLC), and low-field nuclear magnetic resonance (NMR) techniques. The optimal formation of uniform microcapsules is achieved at a stirring speed of 800 rpm and centrifugation is no longer necessary. HPLC demonstrates that the microcapsules formed at 800 rpm show a better control of liquid release than the heterogeneous ones obtained at a lower stirring speed. The centrifuged samples have rounded shapes, with dimensions between 80 and 800 nm, while the non-centrifuged samples are more uniform, with a spherical shape and dimensions of approximately 800 nm.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14221853