The tumour suppressor CYLD regulates the p53 DNA damage response

The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-08, Vol.7 (1), p.12508-14, Article 12508
Hauptverfasser: Fernández-Majada, Vanesa, Welz, Patrick-Simon, Ermolaeva, Maria A., Schell, Michael, Adam, Alexander, Dietlein, Felix, Komander, David, Büttner, Reinhard, Thomas, Roman K., Schumacher, Björn, Pasparakis, Manolis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans . Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD. CYLD is a deubiquitinase known to act as a tumour suppressor in different models of carcinogenesis. Here, the authors show that CYLD suppresses carcinogen-induced tumorigenesis by deubiquitinating p53 and promoting its stabilization and activation in response to DNA damage.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms12508