Constructions of Vector-Valued Filters and Vector-Valued Wavelets
Let a =(a1,a2,…,am)∈ℂm be an m-dimensional vector. Then, it can be identified with an m×m circulant matrix. By using the theory of matrix-valued wavelet analysis (Walden and Serroukh, 2002), we discuss the vector-valued multiresolution analysis. Also, we derive several different designs of finite le...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Mathematics 2012-01, Vol.2012 (2012), p.277-294-020 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let a =(a1,a2,…,am)∈ℂm be an m-dimensional vector. Then, it can be identified with an m×m circulant matrix. By using the theory of matrix-valued wavelet analysis (Walden and Serroukh, 2002), we discuss the vector-valued multiresolution analysis. Also, we derive several different designs of finite length of vector-valued filters. The corresponding scaling functions and wavelet functions are given. Specially, we deal with the construction of filters on symmetric matrix-valued functions space. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2012/130939 |