Predictive model for monitoring water turbidity in a subtropical lagoon using Sentinel-2A/B MSI images
ABSTRACT Ensuring prompt and effective water quality monitoring is increasingly important. Remote sensing has been shown to be an effective tool for simplifying and speeding up this process. The aim of this study is to develop an empirical model to map the spatial and temporal dynamics of turbidity...
Gespeichert in:
Veröffentlicht in: | Revista brasileira de recursos hídricos 2023-01, Vol.28 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT Ensuring prompt and effective water quality monitoring is increasingly important. Remote sensing has been shown to be an effective tool for simplifying and speeding up this process. The aim of this study is to develop an empirical model to map the spatial and temporal dynamics of turbidity in Mirim Lagoon, located in southern Brazil. To achieve this, Sentinel-2A/B MSI sensor data were combined with turbidity data collected in situ. The model was applied to monthly images (with cloud cover ≤ 20%) in 2019 and 2020 using the Google Earth Engine (GEE) platform. Mean turbidity values in the lagoon did not vary significantly, remaining between 30 and 75 NTU overall. However, there were differences in turbidity levels between the northern and southern regions of the lagoon in some months of the investigated years. By applying this methodology and analyzing the results, we were able to better understand the behavior of turbidity throughout the lagoon and gain insights into the quality of this important freshwater source.
RESUMO Tem se tornado cada vez mais necessário garantir agilidade e eficácia no monitoramento da qualidade da água. Nesse sentido, o sensoriamento remoto tem se mostrado uma ferramenta eficaz, capaz de tornar esse processo mais rápido e simples. O objetivo do presente estudo é gerar um modelo empírico para mapear espacial e temporalmente a dinâmica da turbidez na Lagoa Mirim, sul do Brasil. Os dados do sensor MSI Sentinel-2A/B foram usados em combinação com os dados de turbidez coletados in situ. Os mapeamentos espaciais e temporais foram realizados na plataforma Google Earth Engine (GEE) aplicando o modelo em imagens mensais (cobertura de nuvens ≤ 20%), em 2019 e 2020. Os valores médios de turbidez observados na lagoa não apresentaram variações significativas; no geral, eles permaneceram entre 30 NTU e 75 NTU. Houve diferença nos níveis de turbidez entre as regiões Norte e Sul da lagoa em alguns meses dos anos investigados. A metodologia aqui aplicada e os resultados observados permitiram analisar o comportamento da turbidez em toda a extensão da Lagoa Mirim e conhecer melhor a qualidade da água nesta importante fonte de água doce. |
---|---|
ISSN: | 1414-381X 2318-0331 2318-0331 |
DOI: | 10.1590/2318-0331.282320220097 |