Topology Optimization of a Single-Point Diamond-Turning Fixture for a Deployable Primary Mirror Telescope

CubeSats, known for their compact size and cost effectiveness, have gained significant popularity. However, their limited size imposes restrictions on the optical aperture and, consequently, the Ground Resolution Distance in Earth Observation missions. To overcome this limitation, the concept of dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2024-01, Vol.11 (1), p.50
Hauptverfasser: Bourgenot, Cyril, Krumins, Valdis, Bramall, David G., Haque, Abdul M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CubeSats, known for their compact size and cost effectiveness, have gained significant popularity. However, their limited size imposes restrictions on the optical aperture and, consequently, the Ground Resolution Distance in Earth Observation missions. To overcome this limitation, the concept of deployable optical payloads with segmented primary mirrors which can unfold like petals has emerged, enabling larger synthetic apertures and enhanced spatial resolution. This study explores the potential benefits of leveraging Additive Manufacturing (AM) and Topology Optimization (TO) in the realm of ultra-precision machining, specifically single-point diamond machining. The goal is to reduce fixture weight while improving stiffness to minimize deformations caused by rotational and cutting forces which compromise optical performance. Through Finite Element Analysis, this research compares conventionally machined fixtures with those produced using AM and TO techniques. The results reveal that concept designs created via TO can achieve a remarkable 68% reduction in weight. This reduction makes the assembly, including the machining fixture and 12 U deployable segments, manageable by a single operator without the need for specialized lifting equipment. Moreover, these innovative designs lead to substantial reductions of up to 86% and 51% in deformation induced by rotational and cutting forces, respectively.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace11010050