Channel-Hopping Using Reinforcement Learning for Rendezvous in Asymmetric Cognitive Radio Networks
This paper addresses the rendezvous problem in asymmetric cognitive radio networks (CRNs) by proposing a novel reinforcement learning (RL)-based channel-hopping algorithm. Traditional methods like the jump-stay (JS) algorithm, while effective, often struggle with high time-to-rendezvous (TTR) in asy...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-12, Vol.14 (23), p.11369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the rendezvous problem in asymmetric cognitive radio networks (CRNs) by proposing a novel reinforcement learning (RL)-based channel-hopping algorithm. Traditional methods like the jump-stay (JS) algorithm, while effective, often struggle with high time-to-rendezvous (TTR) in asymmetric scenarios where secondary users (SUs) have varying channel availability. Our proposed RL-based algorithm leverages the actor-critic policy gradient method to learn optimal channel selection strategies by dynamically adapting to the environment and minimizing TTR. Extensive simulations demonstrate that the RL-based algorithm significantly reduces the expected TTR (ETTR) compared to the JS algorithm, particularly in asymmetric scenarios where M-sequence-based approaches are less effective. This suggests that RL-based approaches not only offer robustness in asymmetric environments but also provide a promising alternative in more predictable settings. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app142311369 |