All-Optical Switch Based on Thermo-Optic Effect in Graphene-on- Si3N4 Structure
A high-performance Mach-Zehnder interferometer (MZI) based all-optical switch using graphene on silicon nitride (Si3N4) is proposed and simulated. Graphene absorbs pump power (λ = 980 nm) on Si3N4 waveguide, generating heat. The heat affects the Si3N4 waveguide, causing a change in its refractive in...
Gespeichert in:
Veröffentlicht in: | Al-Nahrain journal for engineering sciences 2024-08, Vol.27 (2), p.199-206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high-performance Mach-Zehnder interferometer (MZI) based all-optical switch using graphene on silicon nitride (Si3N4) is proposed and simulated. Graphene absorbs pump power (λ = 980 nm) on Si3N4 waveguide, generating heat. The heat affects the Si3N4 waveguide, causing a change in its refractive index due to thermo-optic effect. By tuning the probe phase (λ = 1550 nm) in the Si3N4 arm with graphene on top, all optical switching can then be carried out. An extinction ratio ranges of 13-25 dB and pump power range 20-270 mW. These findings demonstrate that our suggested configuration offers a useful integrated part for the creation of effective all-optical control devices on the insulator platform with a quick switching rate. Moreover, the suggested design might be able to achieve a wide bandwidth by utilizing an integrated MZI structure. |
---|---|
ISSN: | 2521-9154 2521-9162 |
DOI: | 10.29194/NJES.27020199 |