Estimation of Intertidal Oyster Reef Density Using Spectral and Structural Characteristics Derived from Unoccupied Aircraft Systems and Structure from Motion Photogrammetry
Eastern oysters (Crassostrea virginica) are an important component of the ecology and economy in coastal zones. Through the long-term consolidation of densely clustered shells, oyster reefs generate three-dimensional and complex structures that yield a suite of ecosystem services, such as nursery ha...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-05, Vol.14 (9), p.2163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eastern oysters (Crassostrea virginica) are an important component of the ecology and economy in coastal zones. Through the long-term consolidation of densely clustered shells, oyster reefs generate three-dimensional and complex structures that yield a suite of ecosystem services, such as nursery habitat, stabilizing shorelines, regulating nutrients, and increasing biological diversity. The decline of global oyster habitat has been well documented and can be attributed to factors, such as overharvesting, pollution, and disease. Monitoring oyster reefs is necessary to evaluate persistence and track changes in habitat conditions but can be time and labor intensive. In this present study, spectral and structural metrics of intertidal oyster reefs derived from Unoccupied Aircraft Systems (UAS) and Structure from Motion (SfM) outputs are used to estimate intertidal oyster density. This workflow provides a remote, rapid, nondestructive, and potentially standardizable method to assess large-scale intertidal oyster reef density that will significantly improve management strategies to protect this important coastal resource from habitat degradation. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14092163 |