Some characterization of $L^r-$ Henstock-Kurzweil integrable functions
In this article, we discuss few properties of $L^r$-Henstock-Kurzweil (in short $L^r$-HK) integrable functions, introduced by Paul Musial in \cite{MS}. We re-defined $L^r$-bounded variations. We have proved that $L^r$-Henstock-Kurzweil integrable functions are Denjoy integrable.
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2024-05, Vol.42, p.1-6 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we discuss few properties of $L^r$-Henstock-Kurzweil (in short $L^r$-HK) integrable functions, introduced by Paul Musial in \cite{MS}. We re-defined $L^r$-bounded variations. We have proved that $L^r$-Henstock-Kurzweil integrable functions are Denjoy integrable. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.64071 |