Some characterization of $L^r-$ Henstock-Kurzweil integrable functions

In this article, we discuss few properties of $L^r$-Henstock-Kurzweil (in short $L^r$-HK) integrable functions, introduced by Paul Musial in \cite{MS}. We re-defined $L^r$-bounded variations. We have proved that $L^r$-Henstock-Kurzweil integrable functions are Denjoy integrable.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2024-05, Vol.42, p.1-6
1. Verfasser: Kalita, Hemanta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we discuss few properties of $L^r$-Henstock-Kurzweil (in short $L^r$-HK) integrable functions, introduced by Paul Musial in \cite{MS}. We re-defined $L^r$-bounded variations. We have proved that $L^r$-Henstock-Kurzweil integrable functions are Denjoy integrable.
ISSN:0037-8712
2175-1188
DOI:10.5269/bspm.64071