EPSP Synthase-Depleted Cells Are Aromatic Amino Acid Auxotrophs in Mycobacterium smegmatis

The epidemiological importance of mycobacterial species is indisputable, and the necessity to find new molecules that can inhibit their growth is urgent. The shikimate pathway, required for the synthesis of important bacterial metabolites, represents a set of targets for inhibitors of Mycobacterium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology spectrum 2021-12, Vol.9 (3), p.e0000921-e0000921
Hauptverfasser: Duque-Villegas, Mario Alejandro, Abbadi, Bruno Lopes, Romero, Paulo Ricardo, Matter, Letícia Beatriz, Galina, Luiza, Dalberto, Pedro Ferrari, Rodrigues-Junior, Valnês da Silva, Ducati, Rodrigo Gay, Roth, Candida Deves, Rambo, Raoní Scheibler, de Souza, Eduardo Vieira, Perello, Marcia Alberton, Morbidoni, Héctor Ricardo, Machado, Pablo, Basso, Luiz Augusto, Bizarro, Cristiano Valim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The epidemiological importance of mycobacterial species is indisputable, and the necessity to find new molecules that can inhibit their growth is urgent. The shikimate pathway, required for the synthesis of important bacterial metabolites, represents a set of targets for inhibitors of Mycobacterium tuberculosis growth. The -encoded 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme catalyzes the sixth step of the shikimate pathway. In this study, we combined gene disruption, gene knockdown, point mutations (D61W, R134A, E321N), and kinetic analysis to evaluate gene essentiality and vulnerability of its protein product, EPSPS, from ( ) ( EPSPS). We demonstrate that -deficient cells are auxotrophic for aromatic amino acids (AroAAs) and that the growth impairment observed for -knockdown cells grown on defined medium can be rescued by AroAA supplementation. We also evaluated the essentiality of selected EPSPS residues in bacterial cells grown without AroAA supplementation. We found that the catalytic residues R134 and E321 are essential, while D61, presumably important for protein dynamics and suggested to have an indirect role in catalysis, is not essential under the growth conditions evaluated. We have also determined the catalytic efficiencies ( / ) of recombinant wild-type (WT) and mutated versions of EPSPS (D61W, R134A, E321N). Our results suggest that drug development efforts toward EPSPS inhibition may be ineffective if bacilli have access to external sources of AroAAs in the context of infection, which should be evaluated further. In the absence of AroAA supplementation, from M. smegmatis is essential, its essentiality is dependent on EPSPS activity, and EPSPS is vulnerable. We found that cells from Mycobacterium smegmatis, a model organism safer and easier to study than the disease-causing mycobacterial species, when depleted of an enzyme from the shikimate pathway, are auxotrophic for the three aromatic amino acids (AroAAs) that serve as building blocks of cellular proteins: l-tryptophan, l-phenylalanine, and l-tyrosine. That supplementation with only AroAAs is sufficient to rescue viable cells with the shikimate pathway inactivated was unexpected, since this pathway produces an end product, chorismate, that is the starting compound of essential pathways other than the ones that produce AroAAs. The depleted enzyme, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), catalyzes the sixth step of shikimate pathway. Depletion of this enzyme
ISSN:2165-0497
2165-0497
DOI:10.1128/Spectrum.00009-21