Observation of site-selective chemical bond changes via ultrafast chemical shifts

The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-11, Vol.13 (1), p.7170-7, Article 7170
Hauptverfasser: Al-Haddad, Andre, Oberli, Solène, González-Vázquez, Jesús, Bucher, Maximilian, Doumy, Gilles, Ho, Phay, Krzywinski, Jacek, Lane, Thomas J., Lutman, Alberto, Marinelli, Agostino, Maxwell, Timothy J., Moeller, Stefan, Pratt, Stephen T., Ray, Dipanwita, Shepard, Ron, Southworth, Stephen H., Vázquez-Mayagoitia, Álvaro, Walter, Peter, Young, Linda, Picón, Antonio, Bostedt, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale. X-ray photoelectron spectroscopy probes the chemical environment in a molecule at a specific atomic site. Here the authors extend this concept with a site selective trigger to follow chemical bond changes as they occur on the femtosecond time scale.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-34670-2