A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-aged mice
The progressive decline of physiological function and the increased risk of age-related diseases challenge healthy aging. Multiple anti-aging manipulations, such as senolytics, have proven beneficial for health; however, the biomarkers that label in vivo senescence at systemic levels are lacking, th...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-11, Vol.13 (1), p.7028-7028, Article 7028 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The progressive decline of physiological function and the increased risk of age-related diseases challenge healthy aging. Multiple anti-aging manipulations, such as senolytics, have proven beneficial for health; however, the biomarkers that label in vivo senescence at systemic levels are lacking, thus hindering anti-aging applications. In this study, we generate a
Glb1
+/m
‒Glb1-2A-mCherry (GAC) reporter allele at the
Glb1
gene locus, which encodes lysosomal β-galactosidase—an enzyme elevated in tissues of old mice. A linear correlation between GAC signal and chronological age is established in a cohort of middle-aged (9 to 13 months)
Glb1
+/m
mice. The high GAC signal is closely associated with cardiac hypertrophy and a shortened lifespan. Moreover, the GAC signal is exponentially increased in pathological senescence induced by bleomycin in the lung. Senolytic dasatinib and quercetin (D + Q) reduce GAC signal in bleomycin treated mice. Thus, the Glb1-2A-mCherry reporter mice monitors systemic aging and function decline, predicts lifespan, and may facilitate the understanding of aging mechanisms and help in the development of anti-aging interventions.
Monitoring the aging process in vivo is challenging. Here the authors generate a
Glb1
+/m
‒Glb1-2A-mCherry (GAC) reporter mouse model, where the GAC signal is consistently correlated with established biomarkers of cellular senescence, cardiac hypertrophy and shortened lifespan, which may prove helpful for studies developing anti-aging interventions. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-34801-9 |