Mathematical biases in the calculation of the Living Planet Index lead to overestimation of vertebrate population decline

The Living Planet Index (LPI) measures the average change in population size of vertebrate species over recent decades and has been repeatedly used to assess the changing state of nature. The LPI indicates that vertebrate populations have decreased by almost 70% over the last 50 years. This is in st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-06, Vol.15 (1), p.5295-11, Article 5295
Hauptverfasser: Toszogyova, Anna, Smyčka, Jan, Storch, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Living Planet Index (LPI) measures the average change in population size of vertebrate species over recent decades and has been repeatedly used to assess the changing state of nature. The LPI indicates that vertebrate populations have decreased by almost 70% over the last 50 years. This is in striking contrast with current studies based on the same population time series data that show that increasing and decreasing populations are balanced on average. Here, we examine the methodological pipeline of calculating the LPI to search for the source of this discrepancy. We find that the calculation of the LPI is biased by several mathematical issues which impose an imbalance between detected increasing and decreasing trends and overestimate population declines. Rather than indicating that vertebrate populations do not substantially change, our findings imply that we need better measures for providing a balanced picture of current biodiversity changes. We also show some modifications to improve the reliability of the LPI. The Living Planet Index is a widely used metric to measure the global population trends of vertebrates. This in-depth analysis of the methodology underlying the index reveals fundamental issues and identifies modifications that partly alleviate them.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-49070-x