Techniques for analysing pattern formation in populations of stem cells and their progeny

To investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells and their progeny are cultured as a monolayer. We assume that the fate of an individua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2011-10, Vol.12 (1), p.396-396, Article 396
Hauptverfasser: Fozard, John A, Kirkham, Glen R, Buttery, Lee Dk, King, John R, Jensen, Oliver E, Byrne, Helen M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells and their progeny are cultured as a monolayer. We assume that the fate of an individual cell is regulated by the signals it receives from neighbouring cells via either diffusive or juxtacrine signalling. We analyse simulated patterns using two different spatial statistical measures that are suited to planar multicellular systems: pair correlation functions (PCFs) and quadrat histograms (QHs). With a diffusive signalling mechanism, pattern size (revealed by PCFs) is determined by both morphogen decay rate and a sensitivity parameter that determines the degree to which morphogen biases differentiation; high sensitivity and slow decay give rise to large-scale patterns. In contrast, with juxtacrine signalling, high sensitivity produces well-defined patterns over shorter lengthscales. QHs are simpler to compute than PCFs and allow us to distinguish between random differentiation at low sensitivities and patterned states generated at higher sensitivities. PCFs and QHs together provide an effective means of characterising emergent patterns of differentiation in planar multicellular aggregates.
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-12-396