Molecular Dynamics Assessment of Mechanical Properties of Fullerphene and Fullerphene/Graphene Composite
Quasi-hexagonal-phase fullerene (qHPC60) is an asymmetrically ordered arrangement of fullerene in the two-dimensional plane, which has been synthesized recently. In this study, we performed a comprehensive investigation of the anisotropic mechanical properties of a qHPC60/graphene composite by means...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2024-08, Vol.8 (8), p.310 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quasi-hexagonal-phase fullerene (qHPC60) is an asymmetrically ordered arrangement of fullerene in the two-dimensional plane, which has been synthesized recently. In this study, we performed a comprehensive investigation of the anisotropic mechanical properties of a qHPC60/graphene composite by means of molecular dynamics simulations. We assessed the mechanical properties of the 2D torsion-angle fullerene model with three force-fields: AIREBO, REAXFF, and TERSOFF. The results of the uniaxial tensile tests show that while the variations in fracture stress and fracture strain, with respect to pre-crack size, had similar trends for the three force-fields, AIREBO was more sensitive than REAXFF. The presence of cracks degraded the mechanical properties. Simulations of tensile tests on the qHPC60/graphene composite revealed that the graphene substrate significantly increased mechanical strength. Our results suggest qHPC60 holds various promising implications for composites. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs8080310 |