Metagenomics Shows That Termite Activities Influence the Diversity and Composition of Soil Invertebrates in Termite Mound Soils
Background. Soil invertebrates are a significant part of the functioning and biodiversity of engineered soil. Nevertheless, it remains unclear how termite bioturbation that promotes soil nutrients affects the diversity and composition of invertebrates that dwell in soils from termite mounds. Therefo...
Gespeichert in:
Veröffentlicht in: | Applied and environmental soil science 2022-05, Vol.2022, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background. Soil invertebrates are a significant part of the functioning and biodiversity of engineered soil. Nevertheless, it remains unclear how termite bioturbation that promotes soil nutrients affects the diversity and composition of invertebrates that dwell in soils from termite mounds. Therefore, we tested the premise that the rich nutrients accrued in soils from termite mounds encourage a complex variety of soil invertebrates. Methods. Whole DNA was extracted from soils from termite mounds and adjacent soils that were 10 m away from the mound. The soil samples were then sequenced using metagenomics. Results. Disparity in the composition of the soil invertebrate communities between the termite mound and their adjacent soils was clear from the results. Also, principal coordinate analysis showed that the structure of the soil invertebrate communities in termite mound soils was distinctive from that of the adjacent soils. The canonical correspondence analysis showed that phosphorus, soil pH, and soil organic carbon were the environmental factors that significantly explained the variation in the composition and diversity of the soil invertebrate communities between the two habitats. Conclusion. Metagenomics and chemical analysis jointly offered a route to examine the compositional and diversity variations in soil invertebrate communities in relation to termite bioturbation. |
---|---|
ISSN: | 1687-7667 1687-7675 |
DOI: | 10.1155/2022/7111775 |