Space in Monoidal Categories

The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subuni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic proceedings in theoretical computer science 2018-02, Vol.266 (Proc. QPL 2017), p.399-410
Hauptverfasser: Enrique Moliner, Pau, Heunen, Chris, Tull, Sean
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subunit: it is a graded monad on the category, and has the universal property of algebraic localisation. Spacetime structure on the base space induces a closure operator on the idempotent subunits. Restriction is then interpreted as spacetime propagation. This lets us study relativistic quantum information theory using methods entirely internal to monoidal categories. As a proof of concept, we show that quantum teleportation is only successfully supported on the intersection of Alice and Bob's causal future.
ISSN:2075-2180
2075-2180
DOI:10.4204/EPTCS.266.25