The On power integral bases of certain pure number fields defined by $x^{120}-m
Let $K$ be a pure number field with $\alpha$ a complex root of a monic irreducible polynomial $F(x) = x^{120}-m \in \mathbb{Z}[x]$ with $ m \neq \pm 1 $. In this paper, we study the monogenity of $K$. More precisely, we prove that if $m$ is square-free, $m \not \equiv 1\md{4}$, $m \not \equiv \pm 1...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2024-05, Vol.42, p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $K$ be a pure number field with $\alpha$ a complex root of a monic irreducible polynomial $F(x) = x^{120}-m \in \mathbb{Z}[x]$ with $ m \neq \pm 1 $. In this paper, we study the monogenity of $K$. More precisely, we prove that if $m$ is square-free, $m \not \equiv 1\md{4}$, $m \not \equiv \pm 1 \md{9} $, and $\ol{m}\not \in \{ \mp 1, 7, 18 \} \md {25}$, then $K$ is monogenic. On the other hand, if $m \equiv 1\md{4}$, $m \equiv 1 \md{9} $, or $m \equiv 1 \md{25}$, then $K$ is not monogenic. Our results are illustrated by some computational examples. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.63052 |