The On power integral bases of certain pure number fields defined by $x^{120}-m

Let $K$ be a pure number field with $\alpha$ a complex root of a monic irreducible polynomial $F(x) = x^{120}-m \in \mathbb{Z}[x]$ with $ m \neq \pm 1 $. In this paper, we study the monogenity of $K$. More precisely, we prove that if $m$ is square-free, $m \not \equiv 1\md{4}$, $m \not \equiv \pm 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2024-05, Vol.42, p.1-11
Hauptverfasser: Didi, Jalal, Ben Yakkou, Hamid
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $K$ be a pure number field with $\alpha$ a complex root of a monic irreducible polynomial $F(x) = x^{120}-m \in \mathbb{Z}[x]$ with $ m \neq \pm 1 $. In this paper, we study the monogenity of $K$. More precisely, we prove that if $m$ is square-free, $m \not \equiv 1\md{4}$, $m \not \equiv \pm 1 \md{9} $, and $\ol{m}\not \in \{ \mp 1, 7, 18 \} \md {25}$, then $K$ is monogenic. On the other hand, if $m \equiv 1\md{4}$, $m \equiv 1 \md{9} $, or $m \equiv 1 \md{25}$, then $K$ is not monogenic. Our results are illustrated by some computational examples.
ISSN:0037-8712
2175-1188
DOI:10.5269/bspm.63052