Genetic Disorders of Bone or Osteodystrophies of Jaws—A Review
Abstract Bone is a specialized form of connective tissue, which is mineralized and made up of approximately 28% type I collagen and 5% noncollagenous matrix proteins. The properties of bone are very remarkable, because it is a dynamic tissue, undergoing constant renewal in response to mechanical, nu...
Gespeichert in:
Veröffentlicht in: | Global medical genetics 2021-06, Vol.8 (2), p.041-050 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Bone is a specialized form of connective tissue, which is mineralized and made up of approximately 28% type I collagen and 5% noncollagenous matrix proteins. The properties of bone are very remarkable, because it is a dynamic tissue, undergoing constant renewal in response to mechanical, nutritional, and hormonal influences. In 1978, “The International Nomenclature of Constitutional Diseases of Bone” divided bone disorders into two broad groups: osteochondrodysplasias and dysostoses. The osteochondrodysplasia group is further subdivided into two categories: dysplasias (abnormalities of bone and/or cartilage growth) and osteodystrophies (abnormalities of bone and/or cartilage texture). The dysplasias form the largest group of bone disorders, hence the loose term “skeletal dysplasia” that is often incorrectly used when referring to a condition that is in reality an osteodystrophy or dysostosis. The word “dystrophy” implies any condition of abnormal development. “Osteodystrophies,” as their name implies, are disturbances in the growth of bone. It is also known as osteodystrophia. It includes bone diseases that are neither inflammatory nor neoplastic but may be genetic, metabolic, or of unknown origin. Recent studies have shown that bone influences the activity of other organs, and the bone is also influenced by other organs and systems of the body, providing new insights and evidencing the complexity and dynamic nature of bone tissue. The 1,25-dihydroxyvitamin D3, or simply vitamin D, in association with other hormones and minerals, is responsible for mediating the intestinal absorption of calcium, which influences plasma calcium levels and bone metabolism. Diagnosis of the specific osteodystrophy type is a rather complex process and various biochemical markers and radiographic findings are used, so as to facilitate this condition. For diagnosis, we must consider the possibility of lesions related to bone metabolism altered by chronic renal failure (CRI), such as the different types of osteodystrophies, and differentiate from other possible neoplastic and/or inflammatory pathologies. It is important that the dentist must be aware of patients medical history, suffering from any systemic diseases, and identify the interference of the drugs and treatments to control them, so that we can able to perform the correct diagnosis and propose the most adequate treatment and outcomes of the individuals with bone lesions. |
---|---|
ISSN: | 2699-9404 2699-9404 |
DOI: | 10.1055/s-0041-1724105 |