osp(1|2)-trivial deformation of osp(2|2)-modules structure on the spaces of symbols Sd2 of differential operators acting on the space of weighted densities Fd2
Let osp(2|2) be the orthosymplectic Lie superalgebra and osp(1|2) a Lie subalgebra of osp(2|2). In our paper, we describe the cup-product H1∨H1, where H1:=H1(osp(2|2),osp(1|2);Dλ,μ2) is the first differential osp(1|2)-relative cohomology of osp(2|2) with coefficients in Dλ,μ2 and Dλ,μ2:=Homdiff(Fλ2,...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-06, Vol.10 (11), p.e31660, Article e31660 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let osp(2|2) be the orthosymplectic Lie superalgebra and osp(1|2) a Lie subalgebra of osp(2|2). In our paper, we describe the cup-product H1∨H1, where H1:=H1(osp(2|2),osp(1|2);Dλ,μ2) is the first differential osp(1|2)-relative cohomology of osp(2|2) with coefficients in Dλ,μ2 and Dλ,μ2:=Homdiff(Fλ2,Fμ2) is the space of linear differential operators acting on weighted densities. This result allows us to classify the osp(1|2)-trivial deformations of the osp(2|2)-module structure on the spaces of symbols Sd2. More precisely, we compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action. Furthermore, we prove that any formal osp(1|2)-trivial deformations of osp(2|2)-modules of symbols is equivalent to its infinitisemal part. This work is the simplest generalization of a result by Laraiedh [17]. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e31660 |