Fine-Tuning the Amphiphilic Properties of Carbosilane Dendritic Networks towards High-Swelling Thermogels

Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2024-04, Vol.16 (4), p.495
Hauptverfasser: Muñoz-Sánchez, Silvia, Barrios-Gumiel, Andrea, de la Mata, Francisco Javier, García-Gallego, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network. Different polymers were selected as precursors, from the highly lipophilic propylene glycol (PPG) to the hydrophilic polyethylene glycol (PEG), including amphiphilic Pluronics L31, L35 and L61. The dithiol polymers reacted with carbosilane crosslinkers through UV-initiated thiol-ene coupling (TEC), and the resultant materials were classified as non-swelling networks (for PPG, PLU and PLU ) and high-swelling hydrogels (for PEG and PLU ). The hydrogels exhibited thermo-responsive properties, shrinking at higher temperatures, and exhibited an intriguing drug release pattern due to internal nanostructuring. Furthermore, we fine-tuned the dendritic crosslinker, including hydroxyl and azide pendant groups in the focal point, generating functional networks that can be modified through degradable (ester) and non-degradable (triazol) bonds. Overall, this work highlighted the crucial role of the amphiphilic balance in the design of dendritic hydrogels with thermo-responsive behavior and confirmed their potential as functional networks for biomedical applications.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics16040495