Integrasi N-gram, Information Gain, Particle Swarm Optimation di Naïve Bayes untuk Optimasi Sentimen Google Classroom

The use of Learning Management System (LMS) applications made by Google with name Google Classroom since 2015 in junior and senior high schools in Bekasi City helps the learning process become easier. However, its use can have positive and negative effects on students. Google Class Sentiment by inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Online) 2019-12, Vol.3 (3), p.383-388
Hauptverfasser: Pramono, Fajar, Didi Rosiyadi, Windu Gata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of Learning Management System (LMS) applications made by Google with name Google Classroom since 2015 in junior and senior high schools in Bekasi City helps the learning process become easier. However, its use can have positive and negative effects on students. Google Class Sentiment by integrating N-grams, Information Gain, Particle Swarm Optimization, and Naïve Bayes Classifiers that have never been done by researchers before. From the experiments carried out, N-gram can increase the accuracy of 6.7% and AUC 4%, while using PSO can increase the Accuracy of 9.9% and AUC of 10.4%.
ISSN:2580-0760
2580-0760
DOI:10.29207/resti.v3i3.1119