Knowledge-Driven Multi-Objective Optimization for Reconfigurable Manufacturing Systems

Current market requirements force manufacturing companies to face production changes more often than ever before. Reconfigurable manufacturing systems (RMS) are considered a key enabler in today’s manufacturing industry to cope with such dynamic and volatile markets. The literature confirms that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computational applications 2022-12, Vol.27 (6), p.106
Hauptverfasser: Smedberg, Henrik, Barrera-Diaz, Carlos Alberto, Nourmohammadi, Amir, Bandaru, Sunith, Ng, Amos H. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current market requirements force manufacturing companies to face production changes more often than ever before. Reconfigurable manufacturing systems (RMS) are considered a key enabler in today’s manufacturing industry to cope with such dynamic and volatile markets. The literature confirms that the use of simulation-based multi-objective optimization offers a promising approach that leads to improvements in RMS. However, due to the dynamic behavior of real-world RMS, applying conventional optimization approaches can be very time-consuming, specifically when there is no general knowledge about the quality of solutions. Meanwhile, Pareto-optimal solutions may share some common design principles that can be discovered with data mining and machine learning methods and exploited by the optimization. In this study, the authors investigate a novel knowledge-driven optimization (KDO) approach to speed up the convergence in RMS applications. This approach generates generalized knowledge from previous scenarios, which is then applied to improve the efficiency of the optimization of new scenarios. This study applied the proposed approach to a multi-part flow line RMS that considers scalable capacities while addressing the tasks assignment to workstations and the buffer allocation problems. The results demonstrate how a KDO approach leads to convergence rate improvements in a real-world RMS case.
ISSN:2297-8747
1300-686X
2297-8747
DOI:10.3390/mca27060106