The Common Bean (Phaseolus vulgaris) Basic Leucine Zipper (bZIP) Transcription Factor Family: Response to Salinity Stress in Fertilized and Symbiotic N2-Fixing Plants
The basic leucine zipper (bZIP) transcription factor family regulates plant developmental processes and response to stresses. The common bean (Phaseolus vulgaris), an important crop legume, possesses a whole set of 78 bZIP (PvbZIP) genes, the majority of these (59%) are most highly expressed in root...
Gespeichert in:
Veröffentlicht in: | Agriculture (Basel) 2018-10, Vol.8 (10), p.160 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The basic leucine zipper (bZIP) transcription factor family regulates plant developmental processes and response to stresses. The common bean (Phaseolus vulgaris), an important crop legume, possesses a whole set of 78 bZIP (PvbZIP) genes, the majority of these (59%) are most highly expressed in roots and nodules, root-derived new organs formed in the rhizobia N2-fixing symbiosis. Crop production is highly affected by salinity in Cuba and other countries. In this work we characterized the adverse effect of salinity to common bean plants of the Cuban CC-25-9-N cultivar grown in fertilized (full N-content) or symbiotic N-fixation (rhizobia inoculated) conditions. We assessed if PvbZIP TF participate in CC-25-9-N common bean response to salinity. Quantitative reverse-transcriptase-PCR (qRT-PCR) expression analysis showed that 26 out of 46 root/nodule-enhanced PvbZIP, that responded to salt stress in roots and/or nodules from fertilized and N2-fixing CC-25-9-N plants. From public common bean transcriptomic data, we identified 554 genes with an expression pattern similar to that of salt-responsive PvbZIP genes, and propose that the co-expressed genes are likely to be involved in the stress response. Our data provide a foundation for evaluating the individual roles of salt-responsive genes and to explore the PvbZIP-mediated improvement of salt tolerance in common bean. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture8100160 |