A Needs Learning Algorithm Applied to Stable Gait Generation of Quadruped Robot

Based on Maslow’s hierarchy of needs theory, we have proposed a novel machine learning algorithm that combines factors of the environment and its own needs to make decisions for different states of an agent. This means it can be applied to the gait generation of a quadruped robot, which needs to mak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (19), p.7302
Hauptverfasser: Zhang, Hanzhong, Yin, Jibin, Wang, Haoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on Maslow’s hierarchy of needs theory, we have proposed a novel machine learning algorithm that combines factors of the environment and its own needs to make decisions for different states of an agent. This means it can be applied to the gait generation of a quadruped robot, which needs to make demand decisions. To evaluate the design, we created an experimental task in order to compare the needs learning algorithm with a reinforcement learning algorithm, which was also derived from psychological motivation theory. It was found that the needs learning algorithm outperformed the reinforcement learning in tasks that involved making decisions between different levels of needs. Finally, we applied the needs learning algorithm to the problem of stable gait generation of quadruped robot, and it had achieved good results in simulation and real robot.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22197302