Iterative learning control for impulsive multi-agent systems with varying trial lengths

In this paper, we introduce iterative learning control (ILC) schemes with varying trial lengths (VTL) to control impulsive multi-agent systems (I-MAS). We use domain alignment operator to characterize each tracking error to ensure that the error can completely update the control function during each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis (Vilnius, Lithuania) Lithuania), 2022-01, Vol.27, p.1-21
Hauptverfasser: Cao, Xiaokai, Fečkan, Michal, Shen, Dong, Wang, JinRong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce iterative learning control (ILC) schemes with varying trial lengths (VTL) to control impulsive multi-agent systems (I-MAS). We use domain alignment operator to characterize each tracking error to ensure that the error can completely update the control function during each iteration. Then we analyze the system’s uniform convergence to the target leader. Further, we use two local average operators to optimize the control function such that it can make full use of the iteration error. Finally, numerical examples are provided to verify the theoretical results.
ISSN:1392-5113
2335-8963
DOI:10.15388/namc.2022.27.25475