Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects

MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell’ miRNA distribution and high transfection efficiency. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-01, Vol.7 (1), p.10376-10376, Article 10376
Hauptverfasser: Zhang, Xiaojin, Li, Yan, Chen, Y. Eugene, Chen, Jihua, Ma, Peter X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell’ miRNA distribution and high transfection efficiency. These polyplexes are encapsulated in biodegradable microspheres to enable controllable two-stage (polyplexes and miRNA) delivery. The microspheres are attached to cell-free nanofibrous polymer scaffolds that spatially control the release of miR-26a. This technology is used to regenerate critical-sized bone defects in osteoporotic mice by targeting Gsk-3β to activate the osteoblastic activity of endogenous stem cells, thus addressing a critical challenge in regenerative medicine of achieving cell-free scaffold-based miRNA therapy for tissue engineering. A challenge in regenerative medicine is the development of cell-free, non-immunogenic miRNA-delivering scaffolds. Here the authors design a cell-free scaffold capable of efficient and prolonged delivery of miRNA-26a to endogenous cells and show that it can regenerate a full-thickness calvarial bone defect in mice.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10376