Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects
MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell’ miRNA distribution and high transfection efficiency. These...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-01, Vol.7 (1), p.10376-10376, Article 10376 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell’ miRNA distribution and high transfection efficiency. These polyplexes are encapsulated in biodegradable microspheres to enable controllable two-stage (polyplexes and miRNA) delivery. The microspheres are attached to cell-free nanofibrous polymer scaffolds that spatially control the release of miR-26a. This technology is used to regenerate critical-sized bone defects in osteoporotic mice by targeting
Gsk-3β
to activate the osteoblastic activity of endogenous stem cells, thus addressing a critical challenge in regenerative medicine of achieving cell-free scaffold-based miRNA therapy for tissue engineering.
A challenge in regenerative medicine is the development of cell-free, non-immunogenic miRNA-delivering scaffolds. Here the authors design a cell-free scaffold capable of efficient and prolonged delivery of miRNA-26a to endogenous cells and show that it can regenerate a full-thickness calvarial bone defect in mice. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms10376 |