Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four

In this article we obtain the geometric classification of singularities, finite and infinite, for the three subclasses of quadratic differential systems with $m_f=4$ possessing exactly two finite singularities, namely: (i) systems with two double complex singularities (18 configurations); (ii) syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2014-01, Vol.2014 (60), p.1-43
Hauptverfasser: Artés, Joan, Llibre, Jaume, Rezende, Alex, Schlomiuk, Dana, Vulpe, Nicolae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we obtain the geometric classification of singularities, finite and infinite, for the three subclasses of quadratic differential systems with $m_f=4$ possessing exactly two finite singularities, namely: (i) systems with two double complex singularities (18 configurations); (ii) systems with two double real singularities (33 configurations) and (iii) systems with one triple and one simple real singularities (123 configurations). We also give here the global bifurcation diagrams of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for these subclasses of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, which give an algorithm for determining the geometric configuration of singularities for any quadratic system.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2014.1.60