IMPROVEMENT TO NEM SP3 MODELLING AND SIMULATION
Accurate reactor core steady state safety analysis requires coupling between thermal-hydraulics and three dimensional multigroup pin by pin neutronics. Concerning the neutronics modeling, the Nodal Expansion Method (NEM) code is developed at North Carolina State University in the framework of high f...
Gespeichert in:
Veröffentlicht in: | EPJ Web of conferences 2021, Vol.247, p.3008 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate reactor core steady state safety analysis requires coupling between thermal-hydraulics and three dimensional multigroup pin by pin neutronics. Concerning the neutronics modeling, the Nodal Expansion Method (NEM) code is developed at North Carolina State University in the framework of high fidelity multiphysics coupling with CTF. NEM includes a simplified third-order Spherical Harmonic (SP3) solver. In this work, the solver has been improved by incorporating higher order scattering matrix library. The boundary conditions were corrected with one dimensional
P
3
theory and a consistent coupling coupling between zeroth- and second-order flux moments was established. Two methods for generating second order discontinuity factors (DFs) has ben developed, one based on the Generalized Equivalence Theory (GET) and one based on Parial Current Equivalence Theory (PCET). DFs were generated with three lattice sizes: single pin, 2 pins and assembly level. These developments were tested using the C5G7 benchmark. The results of the SP3 solver improvement, by using
P
2
and
P
3
scattering cross sections, show a 50% decrease in the eigenvalue (
k
eff
) prediction error compared to the reference transport solution. The GET DFs are applied in the C5G7 core pin by pin calculation and are compared with PCET DFs. The results show that PCET have a better performance in global results (eigenvalue). Concerning the different lattice sizes studies, the results show that DFs generated in smalll colorsets can improve local solutions. However, in order to reveal strong global trends, DFs should be generated in a larger corloset representative of the whole core. For the core calculations, DFs generated with the three colorsets together with an additional mixed type DFs were tested. For the mixed type, DFs generated from assembly size lattice were used for the internal interfaces and DFs generated from 2 pins size lattice were used for the assemblies boundary interfaces. These mixed DFs outperformed all the other configurations indicating that they manage to accomplish a satisfying compromise between global and local trends. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202124703008 |